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Solving Problems with Min-Type Functions by
Disjunctive Programming

MIKHAIL ANDRAMONOV
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Abstract. We consider applications of disjunctive programming to global optimization and
problems with equilibrium constraints. We propose a modification of the algorithm of F. Beaumont
for disjunctive programming problems and show its numerical efficiency.
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1. Introduction

Global optimization is a popular and important field of research. In general, the
problems of global optimization are very difficult to solve due to their combinatorial
nature (see [14, 15]), however, it is possible to solve specially structured problems
efficiently. For example, there exist a number of methods of minimizing Lipschitz
functions, which are a very important class of functions [23]. Recently one of the
important tools for global optimization has become abstract convex analysis.

There are a number of algorithms of global minimization, based on abstract
convexity. These methods use abstract convex analysis (see [17, 21, 25–27, 30]) in
order to approximate the objective function by generalized affine minorants.
Usually, they are extensions of the cutting plane method for convex optimization
[16], as, for example, the cutting angle method for minimizing increasing convex-
along-rays functions (see [1, 3, 4, 28, 29]). These methods proved efficient for
problems of moderate size. However, they include the solution of a subproblem of
minimizing the maximum of min-type functions, which is NP-hard. This paper is
devoted to the algorithms for solving this subproblem.

There are several possible approaches. One of them is direct decomposition,
which is applicable only to problems with a small number of variables. The second
one is the reduction to a problem of mixed integer programming, which is
inconvenient, as the number of binary variables grows fast after each iteration. So,
we have chosen an approach, which is based on disjunctive programming (see
[7–9]). This approach is convenient, as the subproblem with min-type functions can
be easily reduced to a problem of disjunctive programming by introducing an
auxiliary variable. Thus, we solve a problem of disjunctive programming instead of
the original subproblem. Note that the problem with min-type functions, which
arises in the minimization of increasing positively homogeneous functions, can also
be solved efficiently by a different technique (see [5]).
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Our algorithm uses relaxation and arbitration as its main parts. The disjunction
with the maximum infeasibility or with the largest corresponding slack is chosen for
arbitration and the term of the disjunction with the smallest infeasibility replaces the
surrogate of the disjunction.

Note that in order to solve problems of global optimization of Lipschitz
functions, we apply the cutting angle method (see [25, 27]). The initial problem is
reduced to minimizing an increasing convex-along-rays function (see [28]). Thus we
solve a sequence of subproblems with the objective functions, which are non-
homogeneous (min-type functions plus a constant).

There are many possible applications. One of them is to solve the Hamiltonian
cycle problem via min-type functions and Markov chains (see [11, 12]). This leads
to a problem of disjunctive programming with the known optimal value, equal to
zero. Another possible application is to use the approach for solving mathematical
problems with equilibrium constraints (see [22]), which can be also represented with
min-type functions.

2. Problem with min-type functions
n nLet p, q be vectors from R 5 hx [R : x . 0 ;i 5 1, 2, . . . , nj. We denote11 i

kp, ql5min p q .i i
i

We address the following problem:

min max hkl , xl1 b ji i
i51,2,...,k

s.t. Ax < d , (1)

0< x <m ,
n k n mwhere A is a matrix m 3 n and l [R , b [R , m [R , d [R . This problem isi 11

very important for minimizing Lipschitz functions, increasing convex-along-rays
functions and increasing star-shaped functions (see [26–28]). One of the main of its
applications is the cutting angle method for minimizing increasing convex-along-
rays functions and Lipschitz functions (see [3, 4, 27]).

We recall the scheme of the algorithm for minimizing a Lipschitz function. Let us
consider a Lipschitz programming problem in the following form:

n py
]]min M 1 f ? O yS Dn i

i511 1 22O yi
i51

s.t. g( y)< 0 ,
(2)

nO y 5 1 ,i
i51

y . 0 .
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Here f is the objective Lipschitz function, g is a Lipschitz function of constraints.
Suppose that the parameters M and p are chosen in such a way that the objective
function of problem (2) is increasing convex-along-rays (see [27]). This means that

n nthe function is increasing on R and its restriction on each ray in R is a convex1 1

function. The scheme of the algorithm is the following.

2.1. CUTTING ANGLE METHOD FOR LIPSCHITZ FUNCTIONS

n n:Step 0. Let k 5 0. Choose an arbitrary point y [ S 5 hx [R : o x 5 1j such0 n 1 i51 i

that g( y )< 0 and parameters M . 0, p . 0.0

Step 1. Calculate a vector , with the coordinates , :k ki

p( f( y )1M)k
]]]], 5 , if y ± 0 ; , 5 0 if y 5 0 ,ki ki ki kiyki

where y is the ith coordinate of the current vector y .ki k

Step 2. Define the function h :k

h ( y)5 min , y 1 (12 p)( f( y)1M) .k ki ki
i,, .0ki

Step 3. Find a global optimum of the problem:

min max h ( y) →i
0<i<k

subject to y [ S ,

g( y)< 0 .

Let y* be a solution of this problem.
: :Step 4. Let k 5 k 1 1, y 5 y* and go to Step 1. Note that in Step 3 we shouldk

essentially solve the problem (1).

We can rewrite problem (1) as:

min t
]kl , xl1 b < t i 51, ki i (3)

s.t. Ax < d
0< x <m .

There are two main approaches to solve the problem (3): directly or by applying a
dychotomy with respect to t, thus obtaining a sequence of systems:

]kl , xl< c i 51, ki i

Ax < d (4)

0< x <m ,

¯ ¯where c 5 t 2 b and t is fixed. Let N 5 h1, 2, . . . , Nj. Thus N denotes both thei i

largest element of h1, 2, . . . , Nj and the set itself. Let ∨ mean the logical OR. The
problem (3) can now be represented as:
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max(2t)
]

s.t. ∨ (l x 2 t)<2b i 51, k ,j[N ij j i
(5)

Ax < d ,

0< x <m

and the system (4) as:
]∨ l x < c i 51, kj[N ij j i

Ax < d (6)

0< x <m .

Each matrix in the disjunction i in the system (3) has the following form:

l 0 . . 0 21i1

0 l . . . 0 21i2 .
. . . . . . . . . . . . . . .3 4
0 . . . . . . l 21in

In the second case each matrix in the disjunction is just the diagonal matrix:

l 0 . . . 0i1

0 l . . . 0i2 .
. . . . . . . . . . . .3 4
0 . . . . . . lin

The typical approach to solving (4) is via its reduction to a mixed integer
programming problem. We obtain the following system ( j changes from 1 to k) of
constraints:

l x 2My < bj1 1 j1 j

l x 2My < bj 2 j2 j

. . . . . . . . . . . . . . .
l x 2My < bjn n jn j

nO y < n 2 1 ,ji
i51

Ax < d ,

0< x <m ,

where y [ h0, 1j for all i, j, and M is a large positive constant.ji

Note that the solution of the problem (3) is crucial for global optimization of
wide classes of functions, but for the moment there have been no efficient algorithm
developed for solving (3). Direct decomposition is applicable only for small
directions, and the reduction to mixed integer linear programming leads to the
growth of the dimensionality of the problem by n binary variables at each iteration
of the cutting angle method (see [3, 4]). Numerical experiments have shown that this
reduction is usually inefficient for sufficiently large dimensionality of the problem.
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We propose to apply to the solution of (3) methods of disjunctive programming
(see [7, 9]), as (5) and (6) are disjunctive programming problems.

3. An algorithm for disjunctive programming problems

In this section we follow F. Beaumont (see [9]), who developed a method of
solving disjunctive programming problems without their reduction to mixed integer
programming problems. The method proved its high numerical efficiency for various
problems, outperforming conventional codes.

Let us consider the following problem:

max O c xj j
j[N

subject to

O a x < b , i [M , (7)ij j i
j[N

0< x <m , j [N ,j j

∨ O a x < b , l [ L .i[D ij j il
j[N

1 1Denote u 5o m a 2 b for all i, where a 5maxha , 0j.i j[N j ij i ij ij

A relaxation of the problem (7), obtained by replacing each disjunction by its
surrogate, is the following linear programming problem:

max O c xj j
j[N

s.t. O a x < b , i [Mij j i
j[N

(8)
0< x <m , j [Nj j

b1 i
] ]O O a x < d 2 11 O , l [ L .ij j lu ui ii[D j[N i[Dl l

Here d 5 uD u is the number of elements in D . The last constraint is called thel l l

surrogate for the disjunction, corresponding to the index set D .l
The dual problem to (8) is the following:

bi
]min O b Y 1O m Z 1O d 2 11 O Qi i j j l lS Duii[M j[N l[L i[Dl

(9)
Ql
]s.t. O a Y 1 Z 1 O a > c , j [N, l [ L .S Dij i j ij juii[M i[Dl

Here Q are shadow prices for the disjunction with the index set D .l l

Instead of using last constraints in (8) as surrogates, it is possible to apply a
different approach, which is based on a theorem due to Balas.
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THEOREM 3.1. [7] (Balas, 1979) The constraint ax <b is a surrogate of the
system

i i∨ (A x < b ) x > 0i[D

iif and only if there exists C > 0, i [D* such that

i i
a <C A i [D* ,

i i
b >C b i [D* ,

i i mwhere A is m 3 n matrix, C is a vector 13m , b [R and D* is a subset of D fori

which the parts i [D of the disjunction are feasible.

iWe suppose that each matrix A has n common terms, given by the upper bounds for
the variables m , and one general constraint. Each member of the disjunction hasj

then the following form:

x <m , j [Nj j
(10)Fo a x < b ,j[N ij j i

where i [D.
Here the square bracket means that at least one of the constraints must be

satisfied.
We compute the value

1
]]]]f 5i O a m 2 bij j i
j[N

If the denominator is negative, we take instead of it one of the following values:

1
]]]]f 5i 1O a m 2 bij j i
j[N

or

1
]]]]f 5 .i O a m 2 bij j i
j[N

As noted in [9], the first choice is better for computational performance.
Then, let

a 5max(a f ) j [N .j ij i
i[D

Also let
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i
u 5a 2 a f , j [N, i [D ,j j ij i

i
b 5max O m u 1f b .j j i iS Di[D j[N

The surrogate constraint is thus

ax <b . (11)

We shall have l such constraints initially.
The algorithm for solving disjunctive programming problems is the following [9].

3.1. ALGORITHM FOR SOLVING DISJUNCTIVE PROBLEMS

Step 0. Generate a relaxation of the initial problem, replacing each disjunction by
its surrogate (11). The set U of unsolved problems includes initially only
this problem. Set BEST52`. Do Steps 1, 2, 3 until U becomes empty.

Step 1. Delete a chosen problem P from U and solve it as a linear programming
problem. Denote its optimal value z (z 52`, if the problem is infeasible).

Step 2. If z .BEST and we obtained a disjunctive solution, let BEST5 z and store
this solution.

Step 3. If z .BEST, but we have not obtained a disjunctive solution, choose a
disjunction and add to U the problems, obtained by replacing the disjunc-
tion by its terms.

Step 4. An optimal solution is the last one, remembered in Step 2.

There are two main problems to be resolved in this algorithm. The first one is the
choice of the disjunction in Step 3 to arbitrate. It has been proposed to evaluate the
infeasibility of each disjunction as:

d 5min O a x 2 b .ij j iH Ji[Dl j[N

Then the disjunction with the largest infeasibility d should be arbitrated.
Other approaches are to choose a disjunction with the maximum absolute value

of the shadow price Q , or with the smallest slack in the surrogate constraint. In anyl

case, the term with the smallest infeasibility o a x 2 b should be chosen forj[N ij i

replacing the surrogate.

4. Solving the problem with min-type functions

We think that some modifications of the algorithm, described above, can be useful.
This is important, because in [9] the way of choosing the problem from the list of
unsolved problems was not indicated. This choice is crucial, however, for the
numerical efficiency of the algorithm. The benefits of modifications of the method
(which are the main new result of this paper) have been confirmed by numerical
experiments.
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Let V be the set of solved linear programs (in Step 1). Each problem is defined
by the vector:

P 5 (Y , Y , . . . , Y ) j [ J ,j 1 2 l k

where k is the number of iterations. There are two possibilities for each Y .i
(1) Y 5 S, which means that the surrogate is used instead of the disjunction i.i

(2) Y 5m, which means that the term m of the disjunction i is used instead of it.i

DEFINITION 4.1. The set of the problems is called the full set, if replacing all the
letters S in each problem by all possible numbers of terms of the disjunctions, we
obtain all possible problems, obtained by replacing some (one, or maybe, all)
disjunctions by its terms.

We shall maintain full sets of linear programming problems.
Each problem j is characterized by the following properties and values:

(1) Feasible / infeasible.
(2) The optimal value z .j
(3) The slacks of surrogate constraints.
(4) The slacks of constraints, which are terms of disjunctions.
(5) The shadow prices.

We assume that no optimal disjunctive solution is known, the set of solved problems
is full, and the question is, which new problem to choose. Once a problem has been
chosen, we use standard criteria for the choice of the disjunction to arbitrate and its
term, unless the problem has been solved.

The first possibility is to choose first a solved problem with the largest z . Then,j

we choose a disjunction with the largest infeasibility and the term in it with the
smallest infeasibility. If the problem thus obtained is in V, we take the term in the
same disjunction with the second smallest infeasibility, and so on. If all the terms
have been considered, and all corresponding problems are in V, we take the
disjunction with second largest infeasibility and consider its terms, and so on.

It is desirable, however, to limit the number of steps, in which we deal with the
problem with the largest z . If after solving K . 0 problems, where K is a positivej

parameter, we have not obtained a disjunctive solution with z .BEST, we take a
solved problem with the second best optimal value. Obviously, we should not repeat
the same problem twice.

There is a possibility that all problems in V are infeasible. Then we suggest to
take for arbitration a problem with the smallest maximum slack of the constraints.

The second possibility is to choose first a solved problem with the smallest
number of surrogate constraints. If for two problems such numbers are equal, the
problem with the larger z is being chosen. This sorts all the problems from V in aj

certain order. There are several cases:
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(1) We obtained a problem in which Y ± S for all i. We store its optimal solutioni

and do not deal with it any more.
(2) After M . 0 iterations, at each of which the number of surrogate constraints is

reduced, we have not obtained a disjunctive solution with z .BEST. Then we
take the next problem from the list, corresponding to our ordering. Note that for
each problem in V we must remember its children, that is, problems, obtained
by replacing one or more surrogate constraints in it by terms of disjunctions. If
our criterion of choosing a disjunction or its term gives us a child, which is
already in V, we take the second best disjunction (term) with respect to our
criterion and so on.

(3) After some number of arbitrations we discover that the corresponding linear
programming problem is infeasible. Then we do the same, as in the second case.
However, if all problems in V are infeasible, we take the problem with the
smallest of the largest slacks of the constraints.

Of course, the above two approaches for the choice of the problem can be combined.
Note that the set V changes after each iteration (one solved problem is added to it).

Now, let us see which surrogate constraints we shall obtain for problems (3) and
(4), using the two approaches, described above. Let m be the upper bound for tn11

(assume that it is known).
In the first approach (see problem (8)), substituting the appropriate matrices, for

problem (3) we obtain the surrogate constraints:

b1 i
] ]O (l x 2 t)< n 2 12 O , k [ L ,ki iu ui ii[D i[Dk k

where D 5 uNu and u 5m l 1 b 1m .k i i ki i n11

For problem (4) we obtain the following surrogate constraints:

b1 i
] ]O l x < n 2 12 O , k [L ,ki iu ui ii[D i[Dk k

where D 5 uNu and u 5m l 1 b 1m , i [D .k i i ki i n11 k

If we use the Balas theorem, the surrogate constraints will be different. Each ith
term of the disjunction number k will be the following system:

x <m j [N ,j j

t <m ,n11

l x 2 t <2b .ki i k

The corresponding matrix is
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1 0 . . . . . . 0
0 1 0 . . . 0

. . . . . . . . . . . . . . .A 5ki
0 0 . . . 0 13 4
0 . . . l . . . 21ki

Then

1
]]]]]f 5 ,ki l im 2m bk i n11 k

a 5 l f j [N ,kj kj kj

a 5max(2f )k,n11 i
i[D

As

i
u 5 l f 2 a f j [N ,kj kj kj kij ki

we have

]j i
u 5 0 ; j 51, n u 5 l f , i ± j, j [N ,kj kj kj kj

i
u 5max(2f )1f .k,n11 ki ki

i[D

iKnowing u , it is easy to compute the right parts of the surrogates a x <b (seej k k

above).
The dual problem in the case of the problem (3) is the following:

n11bk
]min O n 2 12 O Q 1 O d Y 1O m Zk i i i iS Duik[L i[D i[M i51k

subject to

Qk
]O a Y 1Z 1 l > 0 j [N, k [Lij j j kjuji[M

Qk
]O a Y 1Z 2 O >21 k [L .ij j n11 uii[M i[Dk

Here u 5m l 1m 1 b . The values Q . as above, are the shadow prices, and iti i ki n11 i k

can be advantageous to choose the disjunction with the maximum absolute shadow
price for arbitration.

5. Applications

There are many possible applications of our approach. We consider only two of
them. The first one is solving the Hamilton Cycle Problem (HCP).
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5.1. FORMULATION

We consider the Hamilton cycle problem (HCP) from a somewhat unorthodox
perspective of an embedding in a Markov Decision Process (MDP) that was
developed in [11] and [12].

More precisely, the form of the HCP analysed here is the following: Given a
directed graph G with N nodes find a simple cycle of N arcs, that is a Hamiltonian
cycle, or determine that none exist.

The unorthodox formulation of the HCP that forms the basis of the present
investigation is as the problem of finding a global minimum (with the objective
function value equal to 0) of a suitably constructed indefinite quadratic program:

min x9Vx
s.t. Ax 5 b , (12)

x > 0 .

Notation. Assume that G has no self-loops and let A(i) be the set of arcs emanating
from node i. Assume that

n 5 uA(i)u> 1 ;i [E 5 h1, 2, . . . , Nj .i

Thus there is at least one arc emanating from each node for otherwise the HCP
would be trivial. An arc emanating from node i will be an ordered pair (i, a).

Whenever it is obvious what the ‘tail’ of an arc is, we will denote the arc only by
its ‘head’. For instance, if we are at node i and we are considering an arc (i, a) we
will denote it merely by a. Let a perturbation parameter ´[ (0, 1) be fixed and
define

N22
k22d (´)5 11 O (12´) .N

k52

Furthermore, for each i, j [E and a [ A(i), as in [11], define the coefficients p (´)ija

by:

1 if i 5 1 and a 5 j
0 if i 5 1 and a ± j
1 if i . 1 and a 5 j 5 1

P (´)5ija ´ if i . 1, a ± j, and j 5 1
12´ if i . 1, a 5 j, and j . 1
0 if i . 1, a ± j, and j . 1 .

Now, matrix A and vector b of (12) are defined by the following system of linear
constraints:

(C1) O O (d 2 p (´))x 5 0 , j [Eij ija ia
i[E a[A(i )

(C2) O O x 5 1ia
i[E a[A(i )
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(C3) O x 5 1/d (´)ia N
a[A(i )

(C4) x > 0; i [E, a [ A(i) .ia

Here d is the Kronecker delta. If x satisfies (C1)–(C4) and x9Vx 5 0, then theij

positive entries of x identify a Hamiltonian cycle of G.
NThus A is an (N 1 2)3 (o n ) matrix and b95 (0, 0, . . . , 1, 1 /d (´)) is ani51 i N

(N 1 2)-dimensional vector. Of course, d is the Kronecker delta. The matrix V is anij
N N(o n )3 (o n ) block diagonal matrix whose ith diagonal block is an n 3 ni51 i i51 i i i

matrix V 5 J 2 I where J is a matrix with 1 in every entry and I an identity matrixi i i i i

of an appropriate dimension.
Of course, the global optimization of (12) is, in rinciple, very difficult problem

since V is an indefinite matrix. In our case we note (see also [2]) that for x feasible
for (12)

x9Vx 5 0 (13)

if and only if
NO O x x 5 0 . (14)ia ib

i51 a±b

which, in turn holds if and only if

NO minhx , x j5 0 . (15)ia ib
i51

Thus the problem of determining whether the global minimum of (12) has the
objective function value equal to 0 at some feasible point can be answered by
solving the ‘Min-type’ global optimization problem (see [2]):

min max min minhx , x j (16)ia ibx i a±b

subject to: x satisfies (C1)–(C4).
As the optimal value of the problem is zero and the variables are positive, we can

rewrite (16) as:

(CD) x ∨ x 5 0 ;a ± b, ;i .ia ib

Then we can solve the roblem with the constraints (C1)–(C4) and (CD) by the
disjunctive approach, outlined in previous section.

In many cases the formulation of the problem with min-type functions is
preferable to the indefinite quadratic programming because some linearity properties
are still preserved. The nonsmoothness of the objective function is not a dis-
advantage, since the derivatives are useful for finding a local minimum, and for
solving HCP a global one is needed.

The second possible application is to linear problems with equilibrium constraints
[22]. These are typically formulated as follows:
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Ax < b ,

Cy < d ,

[x, y]5 0 ,

x, y > 0 ,

where the square brackets mean the inner product. Here A, C are m 3 n matrices and
nb, d [R .

We can reformulate the problem in the following way:

x ∨ y 5 0 ;ii i

Ax < b ,

Cy < d .

This is a problem, for which we can apply the methods presented above.
Another possible application is in the sublinear algebra problems, which are

important for the quasi-differential calculus (see [10]). Typically, we have a set of
the following constraints:

min l x 1max r x 5 b .i i j j] ]
i51,m j51,k

Each constraint can be represented in a disjunctive form:

l x 1 r x 5 b1 1 1 1

l x < l x i ± 11 1 i i

r x > r x j ± 11 1 j j

OR

l x 1 r x 5 b1 1 2 2

l x < l x i ± 11 1 i i

r x > r x j ± 22 2 j j

OR

. . . . . . . . . . . . . . . . .

l x 1 r x 5 bm m k k

l x < l x i ±mm m i i

r x > r x j ± kk k j j

Obviously, the Balas theorem can be applied in order to generate surrogate
constraints. It is necessary to generalize the algorithm, however, in order to solve
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such problem. Certainly, each equality constraint can be represented as two
inequalities.

6. Numerical experiments

A number of test problems were solved by the cutting angle method (see [25, 27]).
The method for minimizing the maximum of min-type functions was the algorithm
proposed in this paper. In order to improve the performance, the local search was
used for improving the current iterate. For the local search either the bundle Newton
method (see [19]) or Nelder-Mead simplex algorithm (see [20]) was used.

Let us consider first the following test examples. In Examples 1–2 the feasible
set is the unit simplex

n
nS 5 x [R :O x 5 1 .H Jn 1 j

j51

EXAMPLE 1.

imin max min l x ,j jx ii51,...,10 j51,...,5,l .0j

iwhere l , i 5 1, . . . , 10 are rows of the following matrix:

10.0 0.0 0.0 0.0 0.0
0.0 10.0 0.0 0.0 0.0
0.0 0.0 10.0 0.0 0.0 
0.0 0.0 0.0 10.0 0.0
0.0 0.0 0.0 0.0 10.0L 5 50.0 50.0 50.0 50.0 50.0 210.0 42.0 42.0 42.0 42.0

41.52488 174.40449 41.52488 41.52488 41.52488
176.09952 42.40819 42.40819 42.40819 42.40819 41.50719 176.02451 41.50719 41.50719 41.50719

The optimal value is equal to 2.38095. The best found value by the cutting angle
method is 2.38095 and the absolute precision is 0.

EXAMPLE 2.

imin max min l x ,j jx ii51,...,30 j51,...,10,l .0j

iwhere l , i 5 1, . . . , 30 are rows of the following matrix:
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1 0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0 0 
0 0 3 0 0 0 0 0 0 0
0 0 0 17 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 7 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 4 0 
0 0 0 0 0 0 0 0 0 14
2 11 2 31 45 1 5 9 11 1 

21 1 4 3 5 7 9 12 6 5
7 7 4 29 19 7 3 4 11 8 8 3 31 2 13 51 1 5 9 2

22 7 17 18 1 12 6 6 7 13L 5 11 8 5 2 22 31 1 23 5 16
14 13 1 31 19 18 3 5 4 28
17 34 15 40 1 7 4 7 13 51
23 3 5 17 27 3 6 1 15 3
42 7 4 22 13 21 2 15 4 217 4 14 6 17 21 19 3 19 15
21 24 5 7 18 42 1 23 9 1713 22 2 37 8 9 11 1 8 11
5 11 12 7 3 2 24 45 6 3
8 21 32 4 9 1 23 52 2 1

19 31 2 35 4 9 12 3 31 9
18 2 23 41 9 6 16 6 26 4
7 4 12 7 31 5 9 1 14 6

29 7 12 23 7 1 13 9 4 241 1 4 14 5 9 23 12 3 12

Approximate solution:

x*5 (0.269, 0.067, 0.090, 0.016, 0.134, 0.030, 0.038, 0.269, 0.067, 0.019) ,

f(x*)5 0.269 .

The best found value by the cutting angle method is 0.272 and the absolute precision
is 0.003. Similar examples were solved by this method for five to 10 variables with
the same precision.

Let us consider examples of larger dimensionality. In these examples Lipschitz
functions are minimized by the technique from [25, 27]. The number of variables
was equal to n 5 15.

EXAMPLE 3 [13, 6].

n n x1 i2] ]f(x)5 O x 2P cos 1 1 ,S ]Di Œd i51 ii51
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nO x < 400 , x >250, i 5 1, . . . , n ,i i
i51

d 5 4000 , x*5 (0, 0, . . . , 0) , f(x*)5 0 .
25Here x* is the global optimum. The precision by norm obtained was 10 .

EXAMPLE 4 [18, 6].
n21

2 2 2f(x)5 sin (py )1O ( y 2 1) (11 10 sin (py 1 1))1 i i
i51

2 2
1 ( y 2 1) (11 sin (2px )) ,n n

n

y 5 11 0.253 (x 2 1) , O x < 70 , x >21, i 5 1, . . . , n ,i i i i
i51

x*5 (1, 1, . . . , 1) , f(x*)5 0 .
26The precision by norm obtained was 10 .

In all cases the time of computation varied between 0.1 and 30.0 seconds. The
software has been written in Microsoft Fortran 90 for Windows 98 on IBM Pentium
MMX 400. The packages PNEW by L. Luksan (see [19]) and COBYLA2 by M.J.D.
Powell (see [24]) were used for nonlinear optimization. The package LPDUAL was
used for solving auxiliary linear programming programs. In all cases the cutting
angle method outperformed by time and precision the global optimization code,
based on simulated annealing. A number of problems with 15–20 variables were
solved. The typical time of computation was 20–30 seconds.
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